Дозирование лекарственных средств. Фармакокинетика и фармакодинамика лекарственных средств

Форма выпуска лекарственного вещества во многом определяет его путь введения в организм. После поступления лекарственного вещества в организм одновременно начинаются два процесса:

• Изменение концентрации лекарственного вещества во времени.
Эти процессы количественно описывает фармакокинетика.

• Взаимодействие лекарственного вещества с молекулярными мишенями действия в органах и тканях организма, определяющие терапевтический эффект и побочные реакции лекарственного средства. Эти вопросы изучает фармакодинамика.

Соотношение между фармакокинетикой и фармакодинамикой схематично представлено на схеме 1.4. Оба эти процесса играют важную роль в механизмах действия лекарственных веществ, без них развитие терапевтического эффекта невозможно. В реальных условиях четкой грани между фармакокинетическими и фармакодинамическими процессами нет. Нарушение любой составляющей приводит к изменению концентрации лекарственного вещества в месте действия и соответственно — к снижению эффективности терапии или повышению вероятности развития побочных реакций.

Таблица 1.7

Примеры некоторых лекарственных препаратов с широким и узким терапевтическим диапазоном



Примеры некоторых лекарственных препаратов с широким и узким терапевтическим диапазоном





Концентрация лекарственного вещества в плазме крови и месте действия, а также развитие терапевтических эффектов и побочных реакций определяется режимом дозирования лекарственного вещества.

Доза — количество лекарственного вещества на прием. Выделяют разовую, суточную и курсовые дозы. В разовых дозах обычно назначают препараты для экстренного вмешательства в жизнедеятельность организма. Действие этих лекарственных средств обычно проявляется достаточно быстро. В суточных дозах обычно назначают препараты, обладающие кумулятивным (накопительным) эффектом. При этом суточная доза может быть разделена на несколько приемов. В курсовых дозах обычно назначают препараты с отсроченным терапевтическим эффектом. Для некоторых препаратов такого типа эмпирически подобраны схемы введения, определяющие то количество лекарственного вещества, которое необходимо ввести в тот или иной день проводимой терапии.

Для определения доз лекарственных средств и оценки их безопасности обычно используют экспериментальный метод. С его помощью на подопытных животных в экспериментальной практике определяют эффективную, токсическую и летальную дозы.

Под эффективной понимают дозу, вызывающую определенный фармакологический эффект, например гипотензивный, противовоспалительный. Токсическая — это доза, приводящая к развитию токсических осложнений. Летальная — доза, приводящая к гибели подопытных животных. Эти дозы принято обозначать как ED (effective dose), TD (toxic dose) и LD (lethal dose).

Чаще всего определяют EDP ED50, ED99, TDP TD50, TD99, LDJ, LD50, и LD99, то есть дозы, обусловившие эффект (например гибель) у 1; 50 и 99% исследуемых животных. Так, ED1 характеризует минимальную дозу, способную оказать фармакологический эффект, ED50 — дозу, вызывающую эффект у половины исследованных животных, ED99 — дозу, вызывающую эффект практически у всех животных.

Следует отметить, что для одного и того же лекарственного вещества эффективная доза может отличаться в зависимости от того, какой эффект является желательным. Так, для взрослого человека эффективная доза ацетилсалициловой кислоты в качестве антитромботического средства составляет 0,075—0,5 г/сут, в качестве противоревматичекого средства — 3 г/сут.

Отметим, что LD определяется только на животных. Для человека определены значения ED и для ряда лекарственных веществ — значения TD. Чем больше интервал между ED50 и TD50, тем более безопасным является его применение:

• Если ED99
• Если ED1
• Если ED1>ТD1, то препарат токсичен.

Так, относительно безопасным считается

применение НПВП, диуретиков, сердечных гликозидов и др. Применение противоопухолевых препаратов, нейролептиков и других практически всегда сопряжено с риском развития токсических осложнений (см. табл. 1.7).

Эксперименты на животных не позволяют выявить все возможные терапевтические и побочные реакции. Особенно это касается кумулятивных эффектов и эффектов пролонгированного применения препаратов. В этих условиях также трудно определить реальное тератогенное и мутагенное действие. Поэтому после испытания новых лекарственных веществ на животных их исследуют на людях — и лишь затем разрешают для применения.

Схема соотношения между фармакокинетическими и фармакодинамическими аспектами действия лекарственных веществ



Схема 1.4.

Схема соотношения между фармакокинетическими и фармакодинамическими аспектами действия лекарственных веществ



При изучении действия лекарственных препаратов на здоровых добровольцах определяют минимальную терапевтическую и минимальную токсическую дозы. Минимальная терапевтическая доза (аналог ED1) определяется минимальным количеством лекарственного вещества, которое необходимо ввести для получения терапевтического эффекта. Минимальная токсическая доза (аналог ТD1) определяется минимальным количеством лекарственного вещества, при котором начинается развитие нежелательных, побочных или токсических явлений. Диапазон между минимальной токсической и терапевтической дозой называется терапевтическим диапазоном. Чем шире терапевтический диапазон, тем меньше вероятности возникновения осложнений при применении данного лекарственного вещества. Минимальная терапевтическая и минимальная токсическая доза лекарственного вещества во многом определяется путем введения лекарственного вещества в организм. Поэтому оптимизация фармакологической терапии может быть сведена к поддержанию концентрации лекарственного вещества в заданной ткани в пределах терапевтического диапазона. Это позволит достигнуть лечебного эффекта без развития побочного действия. Поскольку в большинстве случаев выявить концентрацию лекарственного вещества в месте его действия (в точке приложения) не представляется возможным, чаще всего на практике определяют концентрацию в плазме крови, поскольку именно концентрация лекарственного вещества в плазме крови определяет его системное действие: поступление в органы мишени и развитие побочных реакций. Поэтому оптимизация лечения с целью повышения эффективности терапии и снижения риска развития побочных реакций может быть сведена к определению концентрации лекарственного вещества в плазме крови либо в других биологических средах организма человека.

Следовательно, режим дозирования лекарственного вещества должен быть подобран так, чтобы концентрация лекарственного вещества в плазме крови была в пределах терапевтического диапазона. Закономерности изменения концентрации лекарственных веществ в организме изучает фармакокинетика. Теоретическая часть этой науки основана на математических методах анализа процессов изменения концентрации лекарственных веществ в организме. Клиническая фармакокинетика базируется на терапевтическом лекарственном мониторинге (therapeutic drug monitoring, ТЛМ) — определении концентрации лекарственных веществ в биологических тканях и жидкостях, что позволяет рационально подбирать индивидуальный режим применения лекарственного средства у больного для достижения максимального терапевтического эффекта и безопасности.

Клиническая фармакокинетика основана на существовании взаимосвязи между доступной определению концентрацией лекарственного средства (например в плазме крови или цельной крови) и его эффектами (терапевтическими или побочными). Для многих лекарств это действительно справедливо, но в некоторых случаях выявить такую взаимосвязь не удается. Как правило, концентрация лекарственного средства в крови связана с его концентрацией в ткани-мишени. Клиническая фармакокинетика позволяет количественно оценить зависимость эффекта от дозы и интерпретировать данные о динамике концентрации лекарственного средства в биологических жидкостях. Выбор и коррекция схемы лечения с учетом фармакокинетических закономерностей позволяет повысить эффективность и безопасность медикаментозного лечения.

Необходимость изменить дозу при тех или иных физиологических и патологических состояниях зачастую обусловлена изменением фармакокинетики препарата. К наиболее важным фармакокинетическим параметрам относятся клиренс, характеризующий элиминацию препарата, объем распределения — кажущийся объем, в котором содержится лекарственное вещество, период полувыведения (Ту) — параметр, характеризующий скорость выведения препарата из организма, и биодоступность — доля введенного препарата, поступившая в системный кровоток. Менее значимые параметры — скорость всасывания и скорость распределения.

Клиренс

Клиренс лекарственного вещества



Это важнейший фармакокинетический параметр, позволяющий подобрать дозовый режим при длительном лечении. Чтобы обеспечить необходимый терапевтический эффект и свести к минимуму риск побочного действия, средняя концентрация препарата в сыворотке крови в стационарном состоянии должна находиться в пределах терапевтического диапазона. Если биодоступность составляет 100%, в стационарном состоянии скорость элиминации препарата равна скорости его поступления.

Скорость поступления = Cl х Ссредн (1.1)



где скорость поступления — количество введенного препарата в единицу времени, С1 — суммарный клиренс, а Ссредн — средняя концентрация препарата в сыворотке крови в стационарном состоянии. Если известна требуемая средняя концентрация препарата в сыворотке крови, скорость поступления можно рассчитать по клиренсу.

Важнейшая с клинической точки зрения особенность клиренса — он, как правило, не зависит от концентрации препарата. Дело в том, что системы, отвечающие за элиминацию большинства лекарственных средств (ферментные, транспортные), обычно не насыщаются, и абсолютная скорость элиминации линейно зависит от концентрации препарата в сыворотке крови. Иными словами, элиминация подчиняется кинетике первого порядка — доля препарата, удаляемая за единицу времени, постоянна. Если же системы элиминации насыщаются, постоянна не доля, а количество препарата, удаляемого за единицу времени. При этом элиминация подчиняется кинетике нулевого порядка, а клиренс зависит от концентрации препарата в сыворотке крови:?

С1 = Vm / (Кm + С), (1.2)

где Кm — концентрация препарата, при которой скорость элиминации составляет половину от максимальной, а Vm — максимальная скорость элиминации, С — концентрация препарата в сыворотке крови.

Понятие клиренса лекарственного средства аналогично понятию клиренса в физиологии почек. Так, клиренс креатинина равен отношению скорости экскреции креатинина с мочой к концентрации креатинина в плазме крови. В общем случае клиренс лекарственного средства равен отношению скорости элиминации вещества всеми органами к концентрации препарата в биологической жидкости.

С1 = скорость элиминации / С. (1.3)

Если клиренс постоянный, скорость элиминации прямо пропорциональна концентрации лекарственного средства. Клиренс отражает не количество элиминировавшегося препарата, а объем биологической жидкости (плазма крови или цельная кровь), полностью очищающийся от данного вещества за единицу времени. Этот показатель можно рассчитать для плазмы крови или цельной крови, а также определить клиренс свободного препарата.

Элиминация лекарственных средств осуществляется почками, печенью и другими органами. Рассчитав клирес для каждого органа как отношение скорости элиминации данным органом к концентрации препарата (например в плазме крови) и просуммировав клиренсы для всех органов, получим суммарный клиренс.

С1поч + С1печ + С1пр = С1, (1.4)

где С1поч — почечный клиренс, С1печ — печеночный клиренс, С1пр — клиренс для прочих органов (лекарственные средства могут метаболизироваться в других органах, выводятся с калом, потом, слюной).

В стационарном состоянии суммарный клиренс можно определить с помощью уравнения 1.1. При однократном введении препарата, биодоступность которого равна 100%, а элиминация подчиняется кинетике первого порядка, суммарный клиренс можно рассчитать на основании закона сохранения массы и интегрирования уравнения 1.3 по времени.

С1 = Доза / AUС. (1.5)

Например. Клиренс пропранолола (для цельной крови) составляет 16 мл/мин/кг (1120 мл/мин при массе тела 70 кг). Препарат элиминируется преимущественно печенью, то есть за 1 мин печень очищает от пропранолола 1120 мл крови. Клиренс не всегда соответствует плазмотоку (или кровотоку) через орган, отвечающий за элиминацию. Если препарат связывается с эритроцитами, скорость его доставки в этот орган существенно выше, чем можно предположить исходя из концентрации препарата в плазме крови. В стационарном состоянии клиренс для плазмы крови и цельной крови выглядит следующим образом:

С1n / С1k = Сk / Сn = 1 + Ht x [Сэ / Сn -1], (1.6)

где С1n — клиренс для плазмы крови, С1k — клиренс для цельной крови, Сn — концентрация препарата в плазме крови, Ск — концентрация препарата в цельной крови, Сэ — концентрация препарата в эритроцитах, Ht — гематокрит.

Таким образом, клиренс для цельной крови равен частному от деления клиренса для плазмы крови на отношение концентраций препарата в цельной крови и плазме крови.

Распределение

Объем распределения

Этот второй важнейший фармакокинетический параметр характеризует распределение препарата в организме. Объем распределения (V) равен отношению общего содержания вещества в организме (ОСО) к его концентрации (С) в плазме крови или цельной крови. Объем распределения часто не соответствует никакому реальному объему. Этот объем, необходимый для равномерного распределения вещества в концентрации, равной концентрации этого вещества в плазме крови или цельной крови.

Vp = ОСО / С. (1.7)

Объем распределения отражает долю вещества, содержащегося во внесосудистом пространстве. У человека массой тела 70 кг объем плазмы крови составляет 3 л, ОЦК — около 5,5 л, межклеточной жидкости — 12 л, общее содержание воды в организме — примерно 42 л. Однако объем распределения многих лекарственных веществ гораздо больше этих величин. Например, если у человека массой тела 70 кг в организме содержится 500 мкг дигоксина, его концентрация в плазме крови составляет 0,75 нг/мл. Разделив общее содержание дигоксина в организме на его концентрацию в плазме крови, получим, что объем распределения дигоксина равен 650 л. Это более чем в 10 раз превышает общее содержание воды в организме. Дело в том, что дигоксин распределяется преимущественно в миокарде, скелетных мышцах и жировой ткани, так что его содержание в плазме крови невелико.
Объем распределения лекарственных средств, активно связывающихся с белками плазмы крови (но не с компонентами тканей), примерно соответствуют объему плазмы крови. Вместе с тем некоторые лекарственные средства содержатся в плазме крови преимущественно в связанной с альбумином форме, но имеют большой объем распределения за счет депонирования в других тканях.

Период полувыведения

Период полувыведения (Т1/2) — это время, за которое концентрация вещества в сыворотке крови (или его общее содержание в организме) снижается вдвое. В рамках однокамерной модели определить Т1/2 очень просто. Полученное значение используют затем для расчета дозы. Однако для многих лекарственных средств приходится использовать многокамерную модель, поскольку динамика их концентрации в сыворотке крови описывается несколькими экспоненциальными функциями. В таких случаях рассчитывают несколько значений Т1/2.

В настоящее время общепризнано, что Ти зависит от клиренса и объема распределения вещества. В стационарном состоянии зависимость между Ти, клиренсом и объемом распределения вещества приблизительно описывается следующим уравнением:

T1/2 « 0,693 х Vp / Cl. (1.8)

Клиренс характеризует способность организма элиминировать вещество, поэтому при снижении этого показателя вследствие какого-либо заболевания Т1/2 увеличивается. Но это справедливо лишь в том случае, если не меняется объем распределения вещества. Например, с возрастом Т диазепама увеличивается, но не за счет снижения клиренса, а вследствие увеличения объема распределения (Klotzet et al., 1975). На клиренс и объем распределения влияет степень связывания вещества с белками плазмы крови и тканей, так что прогнозировать изменение Т1/2 при том или ином патологическом состоянии не всегда возможно.

По Т1/2 не всегда можно судить об изменении элиминации препарата, зато этот показатель позволяет рассчитать время достижения стационарного состояния (в начале лечения, а также при изменении дозы или частоты введения). Концентрация лекарственного вещества в сыворотке крови, составляющая примерно 94% средней стационарной, достигается за время, равное 4 х Т1/2. Кроме того, с помощью Т1/2 можно оценить время, необходимое для полной элиминации вещества из организма, и рассчитать интервал между введениями.

Биодоступность и скорость всасывания

Биодоступность

Как выше отмечено, в системный кровоток поступает не весь всосавшийся препарат. Количество лекарственного средства, поступившее в системный кровоток, зависит не только от дозы, но и от биодоступности. Последняя определяется степенью всасывания, а также степенью элиминации, которой лекарственное средство подвергается до поступления в системный кровоток. Помимо неполного всасывания (см. выше), низкая биодоступность может быть обусловлена интенсивным метаболизмом в кишечнике или печени либо экскрецией с желчью.

Скорость всасывания

Скорость всасывания, как правило, не влияет на среднюю концентрацию препарата в сыворотке крови в стационарном состоянии, но может существенно сказываться на фармакологических эффектах. Если препарат поступает в системный кровоток быстро (например при внутривенном струйном введении) и первоначально распределяется в небольшом объеме, концентрация его в сыворотке крови может быть достаточно высокой. По мере распределения препарата в менее интенсивно кровоснабжаемые органы и ткани она снижается. Если препарат поступает в системный кровоток медленнее (например при внутривенной инфузии), его распределение начинается еще до того, как будет введена вся доза. Поэтому максимальная концентрация в сыворотке крови ниже и достигается позднее. Препараты длительного действия обеспечивают медленное, равномерное всасывания лекарственных средств, снижая колебания концентрации препарата в сыворотке крови в период между введениями. Скорость распределения лекарственного вещества в разные ткани-мишени может быть разной, поэтому при изменении скорости введения выраженность терапевтических эффектов и побочных реакций может временно меняться.

Подбор и коррекция дозы

Терапевтический эффект при однократном введении препарата появляется спустя некоторое время после введения, постепенно достигается максимума, затем ослабевает и исчезает.

Его динамика соответствует концентрации препарата в сыворотке крови, что определяется его фармакологическими особенностями (всасывание, распределение, элиминация). Терапевтический эффект появляется по достижении терапевтической концентрации и возрастает по мере ее повышения. Длительность эффекта зависит от времени, в течение которого концентрация препарата в сыворотке крови превышает терапевтическую. Аналогичным образом побочные реакции зависят от токсической концентрации препарата. В диапазоне между этими концентрациями (терапевтический диапазон) лекарственное средство эффективно, но не оказывает побочных реакций. При многократном введении препарата дозу и интервал между введениями подбирают таким образом, чтобы достичь максимального терапевтического эффекта при минимальном побочном действии. Нижней границей терапевтического диапазона, как правило, считают концентрацию препарата в сыворотке крови, при которой терапевтический эффект составляет примерно половину максимального. Верхняя же граница соответствует концентрации, в которой побочные реакции возникают не более чем у 5—10% больных. Токсическая концентрация некоторых лекарственных средств превышает терапевтическую менее чем в 2 раза. Следует помнить и об индивидуальных особенностях пациентов: одни хорошо переносят концентрацию препарата в сыворотке крови, превышающую токсическую, а у других возникают выраженные побочные реакции, когда концентрация в сыворотке крови остается в пределах терапевтического диапазона.

Если фармакологические эффекты лекарственных средств оценивать легко (например по изменению АД или уровню глюкозы плазмы крови), то дозу можно подбирать методом проб и ошибок. Чтобы определить, в каких пределах и насколько часто можно менять дозу, применяют эмпирические правила, учитывающие вышеприведенные фармакологические закономерности (например, дозу меняют не более чем на 50% и не чаще чем через 3-4 Ти). Если дозозависимой токсичности нет, для обеспечения максимальной эффективности и увеличения времени действия препарата можно применять его в дозе значительно выше средней терапевтической. Так, например, поступают с большинством блокаторов р-адренорецепторов.

Если фармакологические эффекты оценить тяжело, лекарственное средство обладает узким терапевтическим диапазоном, высокий риск побочных реакций при неэффективности лечения или препарат применяют с профилактической целью, дозу меняют незначительно, тщательно наблюдая больных для выявления побочных реакций. Так или иначе средняя концентрация лекарственного средства в стационарном состоянии должна находиться в пределах терапевтического диапазона. В большинстве случаев определять фактическую концентрацию препарата в сыворотке крови нет необходимости: достаточно лишь знать, как она зависит от дозы и частоты введения. Однако для небольшого количества препаратов терапевтическая концентрация отличается от токсической всего в 2—3 раза (дигоксин, теофиллин, лидокаин, аминогликозиды, циклоспорины, противосудорожные средства) в стационарном состоянии, в которой он эффективен, но обусловливает минимум побочных реакций. Затем измеряют фактическую концентрацию препарата и при необходимости корригируют дозу так, чтобы фактическая концентрация была максимально приближена к требуемой.

Поддерживающая доза

В большинстве случаев лекарственные средства вводят дробно или в виде инфузии так, чтобы стационарная концентрация находилась в пределах терапевтического диапазона. В стационарном состоянии скорость поступления препарата равна скорости его элиминации. Подставив в уравнение требуемую концентрацию препарата в сыворотке крови, получим:

Скорость поступления = Ссредн * С1 / F, (1.9)

где F — биодоступность.

Зная требуемую сывороточную концентрацию препарата, его клиренс и биодоступность, можно рассчитать дозу и частоту введения.

Дозу и частоту приема (то есть скорость поступления препарата) можно рассчитать на основании уравнения 1.9. Биодоступность дигоксина равна 0,7.

Скорость поступления = С средн , * С1 / F = 1,5 нг/мл * 1,6 / 0,7 мл/мин/кг = 3,43 нг/кг/мин = 236 нг/мин = 236 * 60 * 24 / 1000 мкг/сут = 340мкг/сут = 0,34 мг/сут.

На практике дозу округляют до ближайшей стандартной, например до 375 мкг/сут или до 0,25 мг/сут. В первом случае средняя концентрация в плазме крови в стационарном состоянии составит 1,5 х 375 / 340 = 1,65 нг/мл, во втором — 1,5 х 250 / 340 = 1,1 нг/мл. ?

Интервал между введениями

Желательно, чтобы в промежутке между введениями не было резких колебаний концентрации препарата в сыворотке крови. Если бы всасывание и распределение препарата происходили мгновенно, размах этих колебаний зависел бы только от Ти. Когда интервал между введениями равен Ти, минимальная и максимальная концентрация различаются в 2 раза, что вполне допустимо.

Если терапевтический диапазон лекарственного средства достаточно широк, то есть в концентрациях, значительно превышающих терапевтическую, оно переносится хорошо, можно назначать максимальные дозы. В данном случае интервал между введениями может быть намного больше Ти, что очень удобно для больного.

Для лекарственного средства с узким терапевтическим диапазоном нередко приходится измерять максимальную и минимальную концентрации препарата в сыворотке крови. Минимальную концентрацию в стационарном состоянии (Смин) дигоксина рассчитывают по следующему уравнению:

, (1.10)

где к = 0,693 / Ту, а Т — интервал между введениями. Величина е-кТ представляет собою долю предыдущей дозы, оставшуюся в организме к моменту введения следующей дозы (с учетом биодоступности).

Насыщающую дозу можно принимать внутрь или вводить внутривенно. Чтобы снизить риск побочных реакций, ее дробят. Вначале вводят 0,5 мг, через 6—8 ч — еще 0,25 мг, тщательно наблюдая больного. Последние 0,25 мг при необходимости тоже можно разделить на 2 дозы по 0,125 мг и вводить с интервалом 6—8 ч, особенно если на прием дигоксина в поддерживающий дозе планируется перейти в течение 24 ч с момента начала лечения.

Индивидуальный подбор дозы

Схему лечения определяют на основании закономерностей всасывания, распределение и элиминации препарата и фармакокинетических параметров С1, Ур, и Т1/2). Рекомендуемые схемы обычно рассчитаны на «среднего» больного. Для многих лекарственных средств стандартное отклонение таких параметров, как F, С1, и Ур, составляет соответственно 20; 50 и 30%. Иными словами, в 95% случаев концентрация препарата в сыворотке крови в стационарном состоянии находится в пределах от 35 до 270% требуемой, что неприемлемо для препаратов с узким терапевтическим диапазоном. Поэтому индивидуальныйподбор дозы и частоты введения — важнейшее условие эффективности лечения. Основываясь на вышеописанных фармакологических закономерностях, схему лечения подбирают таким образом, чтобы обеспечить необходимый терапевтический эффект и свести к минимуму риск побочных реакций. По возможности измеряют концентрацию лекарственных средств в сыворотке крови. На основании полученных данных по специальным методикам корригируют дозу препаратов с узким терапевтическим диапазоном (например сердечных гликозидов, антиаритмических средств, дифенина, теофиллина).

Количественные и качественные методы фармакокинетики сложны и дорогостоящи для обычного применения, которое к тому же во многих случаях не оправдано, так как существуют отработанные схемы дозирования лекарственных средств и их коррекции с учетом индивидуальных особенностей пациентов. Однако в ряде случаев для этого необходим терапевтический лекарственный мониторинг, который обязателен в следующих ситуациях, к которым в первую очередь относятся (Белоусов Ю.Б., Гуревич К.Г., 2005):

1. Значительная индивидуальная вариация фармакокинетических параметров препаратов. Например, известны случаи, когда лечебный эффект препарата в плазме крови достигался при минимальной терапевтической концентрации. Так, острые гепатотоксические эффекты в результате применения парацетамола были отмечены в плазме крови в соответствии с терапевтическим коридором, а другие факторы, которые могли бы привести к подобному осложнению (например алкоголизм), были исключены.

2. Особенности фармакокинетики у детей и лиц пожилого возраста. У первых отмечают существенные вариации в развитии систем метаболизма и экскреции лекарственного вещества. Практически у всех лиц пожилого возраста выявляют заболевания, изменяющие фармакокинетические параметры известных лекарственных препаратов или требующие комплексной терапии, при которой могут возникнуть непредсказуемые лекарственные взаимодействия. Кроме того, с возрастом даже у лиц без заболевания почек отмечается снижение почечного клиренса креатинина, что характеризует снижение эффективности системы элиминации лекарственных средств.

3. Узкий терапевтический диапазон лекарственного препарата, высокая вероятность развития побочных реакций даже при использовании минимальных терапевтических концентраций лекарственного вещества.

4. Период беременности, кормления грудью и прочие состояния, при которых необходимо полностью исключить риск развития побочных реакций лекарственной терапии, или ситуации, при которых существенно изменяются фармакокинетические параметры препаратов.

5. Нелинейная фармакокинетика препаратов, когда нет четкой связи между концентрацией лекарственного вещества в крови и терапевтическим эффектом. При этом обычно постулируется, что развитие побочных реакций связано с изменением концентрации лекарственного вещества в плазме крови или эффекторной ткани.

6. Заболевания, изменяющие фармакокинетические параметры лекарственных препаратов: СН, печеночная и почечная недостаточность, заболевание ЖКТ.

7. Необходимость проведения комплексного лечения, непредсказуемость эффектов сочетанной фармакотерапии. При этом следует учитывать прием пациентом безрецептурных препаратов, растительных компонентов, а также характер питания. Обычно терапевтический лекарственный мониторинг необходим при одновременном применении >5 лекарственных средств, включая лекарственные формы для местного применения, витаминные средства, гормональные контрацептивы, средства народной медицины, гомеопатические субстанции и т.д. Однако при назначении сильнодействующих или имеющих одинаковые системы метаболизма препаратов либо во всех указанных в п. 1—6 случаях терапевтический лекарственный мониторинг может потребоваться уже при применении >2 лекарственных средств.
<< |
Источник: Под редакцией В.Н. Коваленко. Руководство по кардиологии. Часть 1. 2008

Еще по теме Дозирование лекарственных средств. Фармакокинетика и фармакодинамика лекарственных средств:

  1. Плацентарный барьер в анестезиологическом плане. Фармакокинетика и фармакодинамика лекарственных средств, используемых в акушерской анестезиологии
  2. Дозирование лекарственных средств
  3. Принципы дозирования лекарственных средств в педиатрии
  4. ОСОБЕННОСТИ ФАРМАКОКИНЕТИКИ ЛЕКАРСТВЕННЫХ СРЕДСТВ, ПРИМЕНЯЕМЫХ В КАРДИОЛОГИИ
  5. Лекарственное средство
  6. Поиск лекарственных средств
  7. Некоторые несовместимости лекарственных средств
  8. Фармакодинамические взаимодействия лекарственных средств
  9. Цели введения лекарственных средств
  10. Скрининг лекарственных средств
  11. Взаимодействие лекарственных средств с никотином